最近在看數(shù)據(jù)手冊(cè)的時(shí)候,發(fā)現(xiàn)在Cortex-M3里,對(duì)于GPIO的配置種類有8種之多:
(1)GPIO_Mode_AIN 模擬輸入(2)GPIO_Mode_IN_FLOATING 浮空輸入(3)GPIO_Mode_IPD 下拉輸入(4)GPIO_Mode_IPU 上拉輸入(5)GPIO_Mode_Out_OD 開漏輸出(6)GPIO_Mode_Out_PP 推挽輸出(7)GPIO_Mode_AF_OD 復(fù)用開漏輸出(8)GPIO_Mode_AF_PP 復(fù)用推挽輸出
對(duì)于剛?cè)腴T的新手,我想這幾個(gè)概念是必須得搞清楚的,平時(shí)接觸的最多的也就是推挽輸出、開漏輸出、上拉輸入這三種,但一直未曾對(duì)這些做過歸納。
因此,在這里做一個(gè)總結(jié):
一、推挽輸出:可以輸出高、低電平,連接數(shù)字器件;推挽結(jié)構(gòu)一般是指兩個(gè)三極管分別受兩個(gè)互補(bǔ)信號(hào)的控制,總是在一個(gè)三極管導(dǎo)通的時(shí)候另一個(gè)截止。高低電平由IC的電源決定。
推挽電路是兩個(gè)參數(shù)相同的三極管或MOSFET,以推挽方式存在于電路中,各負(fù)責(zé)正負(fù)半周的波形放大任務(wù),電路工作時(shí),兩只對(duì)稱的功率開關(guān)管每次只有一個(gè)導(dǎo)通,所以導(dǎo)通損耗小、效率高。輸出既可以向負(fù)載灌電流,也可以從負(fù)載抽取電流。推拉式輸出級(jí)既提高電路的負(fù)載能力,又提高開關(guān)速度。
二、開漏輸出:輸出端相當(dāng)于三極管的集電極,要得到高電平狀態(tài)需要上拉電阻才行。適合于做電流型的驅(qū)動(dòng),其吸收電流的能力相對(duì)強(qiáng)(一般20mA以內(nèi))。
開漏形式的電路有以下幾個(gè)特點(diǎn):
1、利用外部電路的驅(qū)動(dòng)能力,減少IC內(nèi)部的驅(qū)動(dòng)。當(dāng)IC內(nèi)部MOSFET導(dǎo)通時(shí),驅(qū)動(dòng)電流是從外部的VCC流經(jīng)上拉電阻、MOSFET到GND。IC內(nèi)部僅需很小的柵極驅(qū)動(dòng)電流。
2、一般來說,開漏是用來連接不同電平的器件,匹配電平用的,因?yàn)殚_漏引腳不連接外部的上拉電阻時(shí),只能輸出低電平,如果需要同時(shí)具備輸出高電平的功能,則需要接上拉電阻,很好的一個(gè)優(yōu)點(diǎn)是通過改變上拉電源的電壓,便可以改變傳輸電平。比如加上上拉電阻就可以提供TTL/CMOS電平輸出等。(上拉電阻的阻值決定了邏輯電平轉(zhuǎn)換的速度。阻值越大,速度越低功耗越小,所以負(fù)載電阻的選擇要兼顧功耗和速度。)
3、開漏輸出提供了靈活的輸出方式,但是也有其弱點(diǎn),就是帶來上升沿的延時(shí)。因?yàn)樯仙厥峭ㄟ^外接上拉無源電阻對(duì)負(fù)載充電,所以當(dāng)電阻選擇小時(shí)延時(shí)就小,但功耗大;反之延時(shí)大功耗小。所以如果對(duì)延時(shí)有要求,則建議用下降沿輸出。
4、可以將多個(gè)開漏輸出連接到一條線上。通過一只上拉電阻,在不增加任何器件的情況下,形成“與邏輯”關(guān)系,即“線與”??梢院唵蔚睦斫鉃椋涸谒幸_連在一起時(shí),外接一上拉電阻,如果有一個(gè)引腳輸出為邏輯0,相當(dāng)于接地,與之并聯(lián)的回路“相當(dāng)于被一根導(dǎo)線短路”,所以外電路邏輯電平便為0,只有都為高電平時(shí),與的結(jié)果才為邏輯1。
關(guān)于推挽輸出和開漏輸出,最后用一幅最簡單的圖形來概括:該圖中左邊的便是推挽輸出模式,其中比較器輸出高電平時(shí)下面的PNP三極管截止,而上面NPN三極管導(dǎo)通,輸出電平VS+;當(dāng)比較器輸出低電平時(shí)則恰恰相反,PNP三極管導(dǎo)通,輸出和地相連,為低電平。右邊的則可以理解為開漏輸出形式,需要接上拉。
三、浮空輸入:對(duì)于浮空輸入,一直沒找到很權(quán)威的解釋,只好從以下圖中去理解了
由于浮空輸入一般多用于外部按鍵輸入,結(jié)合圖上的輸入部分電路,我理解為浮空輸入狀態(tài)下,IO的電平狀態(tài)是不確定的,完全由外部輸入決定,如果在該引腳懸空的情況下,讀取該端口的電平是不確定的。
四、上拉輸入/下拉輸入/模擬輸入:這幾個(gè)概念很好理解,從字面便能輕易讀懂。
五、復(fù)用開漏輸出、復(fù)用推挽輸出:可以理解為GPIO口被用作第二功能時(shí)的配置情況(即并非作為通用IO口使用)
六、總結(jié)在STM32中選用IO模式
模式
1、浮空輸入GPIO_IN_FLOATING ——浮空輸入,可以做KEY識(shí)別,RX12、帶上拉輸入GPIO_IPU——IO內(nèi)部上拉電阻輸入3、帶下拉輸入GPIO_IPD—— IO內(nèi)部下拉電阻輸入4、模擬輸入GPIO_AIN ——應(yīng)用ADC模擬輸入,或者低功耗下省電
5、開漏輸出GPIO_OUT_OD ——IO輸出0接GND,IO輸出1,懸空,需要外接上拉電阻,才能實(shí)現(xiàn)輸出高電平。當(dāng)輸出為1時(shí),IO口的狀態(tài)由上拉電阻拉高電平,但由于是開漏輸出模式,這樣IO口也就可以由外部電路改變?yōu)榈碗娖交虿蛔???梢宰xIO輸入電平變化,實(shí)現(xiàn)C51的IO雙向功能
6、推挽輸出GPIO_OUT_PP ——IO輸出0-接GND, IO輸出1 -接VCC,讀輸入值是未知的7、復(fù)用功能的推挽輸出GPIO_AF_PP ——片內(nèi)外設(shè)功能(I2C的SCL,SDA)8、復(fù)用功能的開漏輸出GPIO_AF_OD——片內(nèi)外設(shè)功能(TX1,MOSI,MISO.SCK.SS)
七、STM32設(shè)置實(shí)例:
1、模擬I2C使用開漏輸出_OUT_OD,接上拉電阻,能夠正確輸出0和1;讀值時(shí)先GPIO_SetBits(GPIOB, GPIO_Pin_0);拉高,然后可以讀IO的值;使用GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_0);
2、如果是無上拉電阻,IO默認(rèn)是高電平;需要讀取IO的值,可以使用帶上拉輸入_IPU和浮空輸入_IN_FLOATING和開漏輸出_OUT_OD;
八、通常有5種方式使用某個(gè)引腳功能,它們的配置方式如下:
1、作為普通GPIO輸入:根據(jù)需要配置該引腳為浮空輸入、帶弱上拉輸入或帶弱下拉輸入,同時(shí)不要使能該引腳對(duì)應(yīng)的所有復(fù)用功能模塊。
2、作為普通GPIO輸出:根據(jù)需要配置該引腳為推挽輸出或開漏輸出,同時(shí)不要使能該引腳對(duì)應(yīng)的所有復(fù)用功能模塊。
3、作為普通模擬輸入:配置該引腳為模擬輸入模式,同時(shí)不要使能該引腳對(duì)應(yīng)的所有復(fù)用功能模塊。
4、作為內(nèi)置外設(shè)的輸入:根據(jù)需要配置該引腳為浮空輸入、帶弱上拉輸入或帶弱下拉輸入,同時(shí)使能該引腳對(duì)應(yīng)的某個(gè)復(fù)用功能模塊。
5、作為內(nèi)置外設(shè)的輸出:根據(jù)需要配置該引腳為復(fù)用推挽輸出或復(fù)用開漏輸出,同時(shí)使能該引腳對(duì)應(yīng)的所有復(fù)用功能模塊。
注意如果有多個(gè)復(fù)用功能模塊對(duì)應(yīng)同一個(gè)引腳,只能使能其中之一,其它模塊保持非使能狀態(tài)。比如要使用STM32F103VBT6的47、48腳的USART3功能,則需要配置47腳為復(fù)用推挽輸出或復(fù)用開漏輸出,配置48腳為某種輸入模式,同時(shí)使能USART3并保持I2C2的非使能狀態(tài)。如果要使用STM32F103VBT6的47腳作為TIM2_CH3,則需要對(duì)TIM2進(jìn)行重映射,然后再按復(fù)用功能的方式配置對(duì)應(yīng)引腳。
上一篇:一塊STM32最小系統(tǒng)板來驅(qū)動(dòng)電機(jī)
下一篇:基于STM32和W5100的SNTP服務(wù)器設(shè)計(jì)
推薦閱讀最新更新時(shí)間:2025-06-27 19:58


- 熱門資源推薦
- 熱門放大器推薦
-
【Follow me第三季第一期】STM32F429I-DISC1任務(wù)匯總
-
【Follow me第三季第1期】任務(wù)三:Arduino環(huán)境運(yùn)動(dòng)傳感器數(shù)據(jù)讀取
-
【Follow me 第三季第1期】任務(wù)二——Arduino控制板載LED燈,并實(shí)現(xiàn)呼吸燈效果
-
【Follow me 第三季第1期】任務(wù)一 源碼-——Arduino環(huán)境Hello EEWorld
-
嵌入式硬件設(shè)計(jì)
-
小波理論:淺談應(yīng)用
-
電磁場及天線原理基礎(chǔ)
-
Unix操作系統(tǒng)設(shè)計(jì)
設(shè)計(jì)資源 培訓(xùn) 開發(fā)板 精華推薦
- Microchip 升級(jí)數(shù)字信號(hào)控制器(DSC)產(chǎn)品線 推出PWM 分辨率和 ADC 速度業(yè)界領(lǐng)先的新器件
- 意法半導(dǎo)體STM32MP23x:突破成本限制的工業(yè)AI應(yīng)用核心
- 意法半導(dǎo)體推出用于匹配遠(yuǎn)距離無線微控制器STM32WL33的集成的匹配濾波芯片
- ESP32開發(fā)板連接TFT顯示屏ST7789跳坑記
- 如何讓ESP32支持analogWrite函數(shù)
- LGVL配合FreeType為可變字體設(shè)置字重-ESP32篇
- 使用樹莓派進(jìn)行 ESP32 Jtag 調(diào)試
- ESP32怎么在SPIFFS里面存儲(chǔ)html,css,js文件,以及網(wǎng)頁和arduino的通訊
- ESP32 freeRTOS使用測試
- LT3477IUF 5V 至 4 個(gè)白光 LED、具有 PWM 調(diào)光的升壓的典型應(yīng)用電路
- 使用 TC7117 模數(shù)轉(zhuǎn)換器和 1.2 外部帶隙基準(zhǔn)(VIN - 連接到公共端)的典型應(yīng)用
- 2.5V 輸出 ADR391A 微功耗、低噪聲精密電壓基準(zhǔn)的典型應(yīng)用
- 使用 NXP Semiconductors 的 TDA1016 的參考設(shè)計(jì)
- DC1116,LTC6103 雙通道、高電壓、高側(cè)電流檢測放大器的演示電路
- 使用 Analog Devices 的 ADR441A 的參考設(shè)計(jì)
- 使用 NXP Semiconductors 的 P2020N 的參考設(shè)計(jì)
- MIC22950YML EV,MIC22950 評(píng)估套件,一種高效、10A 集成同步降壓(降壓)穩(wěn)壓器
- T4240RDB-PB,QorIQ T4240 參考設(shè)計(jì)板,緊湊型 (U1),具有 24 虛擬核 T4240 器件的高度集成板
- LT1308BIS8 5V 至 12V 升壓轉(zhuǎn)換器的典型應(yīng)用電路
- 上汽大眾:汽車網(wǎng)絡(luò)安全漏洞防護(hù)
- 恩智浦推出全新電池控制IC系列 助力新能源解決方案發(fā)展
- 全球首條GWh級(jí)新型固態(tài)電池生產(chǎn)線樣件下線
- 總投資455億元!三大動(dòng)力電池項(xiàng)目齊刷進(jìn)度條
- 現(xiàn)代汽車韓國建氫燃料電池廠,2028年投產(chǎn)
- 6月融資一覽:智能汽車芯片、第三代半導(dǎo)體、機(jī)器人成資本焦點(diǎn)
- 艙駕一體“點(diǎn)燃”新戰(zhàn)事
- 汽車智能化2.0引爆「萬億蛋糕」,誰在改寫游戲規(guī)則?
- 2025研華智能系統(tǒng)產(chǎn)業(yè)伙伴峰會(huì)成功舉辦
- 意法半導(dǎo)體公布2025年第二季度財(cái)報(bào)和電話會(huì)議時(shí)間安排
- 科幻感十足!盤點(diǎn)未來可能普及的汽車配置
- 恩智浦利用RapidRF前端設(shè)計(jì)加快5G基礎(chǔ)設(shè)施建設(shè)
- 華為再公開一項(xiàng)智能汽車行駛軌跡規(guī)劃專利,提升自動(dòng)駕駛安全性
- 虹軟VisDrive 6.0全新升級(jí) 視覺AI協(xié)同車載芯片解鎖未來駕駛新模式
- 恩智浦將GaN用于5G多芯片模塊,以實(shí)現(xiàn)高能效移動(dòng)網(wǎng)絡(luò)
- MPLAB X IDE v2.26 導(dǎo)入舊的工程時(shí)遇到的一個(gè)小問題及解決方案
- Pickit 3 Programmer使用說明及 燒寫程序步驟
- 疫情加劇惡化,JDI再獲100億日元追加資金支持
- 學(xué)習(xí)筆記之 STM32單片機(jī)
- FSMC驅(qū)動(dòng)TFT顯示屏(和驅(qū)動(dòng)觸摸屏)